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The Hausdorff Dimension of Some 
Fractais and Attractors of Overlapping 
Construction 
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We introduce a method to show that the Hausdorff dimension of certain fractals 
of overlapping construction is "almost always" what would be observed if no 
overlapping occurred. The method is also used to examine the dimension of 
attractors in some noninjective, piecewise linear, "baker's"-type transformations. 
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1. I N T R O D U C T I O N  

The s tandard "Cantor"  method of  construct ion of self-similar fractals in n- 
dimensional space consists of replacing a set E by k similar subsets 
El,..., Ek with similarity ratios 2~ ..... 2~, repeating this process for each of 
the E~, and so on. M a n y  familiar examples, such as the von Koch  curve or  
the Menger  sponge, may  be obtained in this way. Provided that the com- 
ponents  in each stage of the construct ion do not  overlap " too much,"  the 
Hausdorff  dimension of  the fractal is given by the unique positive s satisfy- 
ing 

k 

~ 2 ~ =  1 (1) 
1 

If the componen t  sets are allowed to overlap substantially, a limiting set is 
still obtained, but the problem of calculating the dimension becomes much 
more awkward.  Our  first aim in this paper  is to show that "in general" the 
dimension will still be given by ( l )  despite the overlapping. 
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A comparable situation arises in discrete dynamical systems. If T is a 
smooth, injective transformation, the attractors that can occur, such as the 
"horseshoe" attractor, have been widely analyzed. Suppose now that T is 
not injective (for example, imagine a horseshoe mapping with the ends of 
the horseshoe bent to cross over), The attractors and co-limit sets of the 
transformation may still exist, but their structure can be rather more com- 
plex due to overlapping of various parts. Nevertheless, it seems plausible 
that in the "generic" case the dimension of the attractor is what would be 
expected for a transformation with similar local characteristics but with no 
overlapping. As a preliminary model of this phenomenon, we examine a 
piecewise linear "slanting baker's transformation" and show that the 
dimension of the attractor is almost surely what would be expected were no 
overlapping present. 

2. THE D I M E N S I O N  OF FRACTALS I N V A R I A N T  U N D E R  
S IMILARIT IES  

Self-similar subsets of ~" may be conveniently regarded as the 
invariant sets of certain transformations. Let $1 ..... S k be similarity trans- 
formations, so that ]Six - S i y  ] = 2i I x -  y] (x, y E W'), where 2i is the con- 
traction ratio of Si. An application of the contraction mapping theorem 
with the Hausdorff metric shows that there exists a unique, nonempty com- 
pact F c  En such that 

k 

F =  ~ S i (F  ) (2) 
i = l  

(see Hutchinson'4)). If I is any compact set with S i ( I ) ~  I for 1 ~< i ~< k, then 
F =  0r  ~ 1 Fr, where Fr = U Sil ~ "'" ~ Sir(l), with the union over all sequen- 
ces with 1 ~< ij~<k for each j. We say that the open set condition holds if 
there exists a bounded open set J such that 

k 

U s,(J) (3) 
i = 1  

with the union disjoint; thus, taking I =  Y in the construction of F above, 
this means that the components of each Fr cannot overlap very much. 
Hutchinson (see also Moran ~8)) shows that if the open set condition holds 
for a set of similarities Sz ..... Sk, then dim F, the Hausdorff dimension of F, 
equals the unique value of s for which 

k 

E = 1 (4) 
i ~ l  
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For example, taking $1, $2: ~ ~ as 

1 1 2 S,(x)=~x, s2(x)=Sx+ ~ 

we get F to be the usual Cantor set. ]?he open set condition holds with 
J =  (0, 1), and the decreasing sequence of closed sets Fr above, with I =  J, 
gives the stages of the famaliar "middle-third" construction. 

Even if the open set condition does not hold for any J, there is still a 
unique nonempty compact F satisfying (2), and this may be constructed 
from an initial interval I as described. However, the subintervals 
comprising the Fr will overlap to a considerable degree, and dim F will not 
necessarily be given by (4). We now show that, nevertheless, the dimen- 
sional estimate (4) will "usually" be correct. For example, it follows from 
Theorem 1 that if 

1 Si(x)=~x+G ( i=  1, 2, 3) 

the invariant set F (which may be thought of as a Cantor set of "overlap- 
ping" construction, see Fig. 1) will have dimension log 3/log 4 for almost 
all (cl, c2, c3) e ~3 in the sense of three-dimensional Lebesgue measure. 

To avoid undue technical difficulties, we present the basic theorem in 
one dimension. The obvious higher dimensional extensions are probably 
true, and an analogous proof works in many cases. 

The idea of the proof is to convert the problem into a related one for a 
set of similarities on Nk for which the open set condition does hold. The 
dimension of the corresponding invariant set can be found, and this set is 
"projected" back to N1 to give invariant sets for the mappings in the 
original problem. Use is made of the projection theorems for Hausdorff 
dimensions (originally due to Marstrand(5); see also Falconer, (2) Chap- 
ter 6) in the following form. If F c  Nk is a Borel set, then for almost all 

m 

m 

Fig. 1. Construction of an overlapping Cantor  set. 
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t = ( t l ,  t2,... , tk-~) in the sense of ( k -  1 )-dimensional Lebesgue measure we 
have dim Ut(F) = min{ 1, dim F}, where U, : Rk ~ R is given by 

Ut(xo, Xl,...,xk 1 ) = X o + t l x l + " "  +tk-~Xk-l" 

In the statement of the theorem the k degrees of freedom as (Cl ..... Ck) 
ranges through Rk are slightly illusory, since the invariant sets are identical 
to within translations on each of a family of parallel lines in Rk. 

We write Ti + ci to denote the mapping x ~ Tix + G. 

Theorem 1. Let T~:~( l<<. i<<.k)  be the linear contractions 
T~x=2~x, with 0 < ] 2 i 1 < 1  and Y.lk]2i]<l. Then for almost all 
(Cl,..., Ck)~ Nk in the sense of k-dimensional Lebesgue measure the non- 
empty compact set E ~ R satisfying 

k 
E= ~ (Ti+ci) E 

i--1 

has Hausdorff dimension s, where Z~ 12~b ' =  1. 

Proof. We lift the mappings T~ to ~* by letting S~: Nx Nk ~_, 
x R k l be given by 

S,(x, y) = (~i  x ,  2,y + ai)  

By the conditions on the 2~, we may choose points 
a~= (a~,l,..., a~,k_l)E R k-~ so that the hypercubes Si(J) are mutually dis- 
joint and contained in J, where J =  ( - 1 ,  1)k. Moreover, by making small 
displacements in the a~ if necessary, we may also assume that the vectors 
with components (ai.~,..., a~.~_ 1, 1 -  2~) (1 ~< i<~k) span ~k. Thus, the map- 
pings S~ are similarity mappings of ratios IR~[ on [Rk with J satisfying the 
open set condition. 

Thus, there is a unique, nonempty compact F~[R k such that, 
F= U k S~(F). Moreover, dim F =  s, where ~21 k I,~i1" = 1. i=1 

For each t e Nk 1 define a mapping U,: R ~ ~ R by 

Ut(xo, x) = x 0 + t" x 

where the dot denotes the scalar product in R k- 1. It is trivial to verify that 
for all t e Nk- 1 and 1 ~< i ~< k the diagram 

Rk s, ~ Rk 

Ut I l Ut 
~1 ) RI 

Ti+ai.t  
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commutes. Thus, 

k k 

U,(F)=  (,.) UtoSi(F)= U (T,+ai ' t)(Ut(F)) 
i - 1  i = l  

so that U,(F) is the nonempty, compact, invariant set associated with the 
mappings (Ti + ai" t) (1 ~< i<~k). By the projection theorems, dim Ut(F ) = s 
for almost all t e [~k 1. For  any to, we have 

k 

(Ut(F) + to) = U ( r i  + ai" t + (1 - 2i) to)(Ut(F) + to) 

Since the dimension of a set is invariant under translation, 
dim(Ut(F)+to)=s for almost all (to, t ) z ~ x  R k 1. But the mapping 

(to, t) -- (a~- t + (1 - , ~ 1 )  t 0  . . . . .  a" t + (1 -- 2k) to) 

is a linear bijection on [~k, so that the unique invariant sets for the 
mappings {T i+Cl  ..... Tk+ck} have dimension s for almost all 
(c1,..., ck) e ~ .  I 

It is possible to estimate how often the invariant set can have excep- 
tionally small dimension using more delicate versions of the projection 
theorems. For example, using results of Mattila, t7) Section 5.7(1), it can be 
shown in exactly the same way that if u ~< s, dim E~> u for all (c~,..., ck) ~ [~k 
except for a set of zero ( k -  1 + u)-dimensional Hausdorff measure. 

3. THE D I M E N S I O N S  OF A T T R A C T O R S  OF PIECEWlSE 
LINEAR M A P P I N G S  

Much has been written on the nature of attractors of injective transfor- 
mations of plane domains. A particularly fundamental type of attractor 
results from a horseshoe type of mapping. Some of the principal features of 
such mappings may be observed in certain piecewise linear transfor- 
mations, such as the aptly named "baker's transformation" (see Ref. 3 for 
some versions of this). For transformations that are not injective, con- 
siderable problems arise, for example, in connection with the Hausdorff 
dimension of attractors. It is reasonable to suppose that if the pieces that 
make up an attractor overlap, the dimansion might be smaller than 
otherwise would be expected. Again, it is natural to examine piecewise 
linear transformations, and Alexander and Yorke (1~ have shown, in the 
case of "fat baker's transformations," that this reduction in dimension can 
occur. However, it is widely believed that such occurrences are exceptional, 
and we now use a variant of the method employed in Theorem 1 to show 
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that this is indeed the case for a class of piecewise linear transformations, 
which might be termed "slanting baker's transformations." 

Fix 2~ ,22 ,#~ ,#2~R,  with 12~1+1,~21<1.  For each c~,c2~N define 
T~ ~, T~2: ~ x  [ - 1 ,  1] ~ b y  

T~'(x, y ) =  (21x-l- #1y  + c 1, 2 y -  1) 

T~2(x, y) = (22x + #2 Y + c2, 2y + 1 ) 

Let T(C~'c2t: ~ x [ -  1, 1 ] ~ be given by 

~TC~l(x,y) if y~>O 
T~C~'c2)(x' Y) = ( T~2(x, y) if y < 0 

It is clear that for each ( C l ,  C2) , if K is a sufficiently large compact interval, 
the set K x [ - 1 ,  1 ] is mapped into itself by T (c1'C2). For  transformations of 
this type, it is easy to see that the attractor of T (c~'c2) is the co-limit set 
obtained as a decreasing sequence of iterates 

(T(C~'c2))(r~(Kx [ - -1 ,  1]) 
r = l  

and also that this set is independent of the particular K chosen (see Fig. 2). 

T h e o r e m  2. For  almost all (c 1, c2) e N2 the attractor of the trans- 
formation T(Cl'C2): ~ X [ -  1, 1 ] ~ as above has Hausdorff dimension 1 + s, 
where 121Is"]  - I,~21s = 1. 

Proof. Choose a compact interval I o N  large enough so that 
2 1 I + # 1 y c I  and 2 2 I + # 2 y c i  for all - l ~ < y ~ < l .  Define mappings 
Si: N 3 ~ b y  

Sl(X, y , z ) =  ( 2 1 x + g l y ,  2 y -  1, 2 1 z + a l )  

S2(x, y, z) = ( 2 2 x + # 2 y ,  2y+  l, 22z+a2)  

Since t21[ + 122! < 1, we may choose number al,a2~_ ~ so that 
( 2 1 I + a l ) ~ ( 2 2 I + a 2 ) c I  with the union disjoint and also so that 
a~(1 - 22) r a2(1 -21) .  Write D = I x  [ - 1 ,  1] x l c  R3, and define 
S: D--+ D by 

~Sl(x, y, z), 0 <. y <~ 1 
S(x, y, z) = ~S2(x, y, z), - 1 <~ y < 0 

Let Py denote the plane containing those points in N3 with second coor- 
dinate equal to y. For  each r the iterate S(~)(D) consist of 2 r disjoint 
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(a) 

(b) 

Fig. 2. First two iterations of the attractor of a slanting baker's transformation. 
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parallelpipeds between the planes P ~ and P~. These paralMepipeds are 
nested in the sense that each parallelepiped of Sr contains two of those 
of S (r+ 1)(D). 

Similarly, for each - 1  ~< y~< 1, Pyc~S~r)(D) consists of 2' disjoint 
squares of side lengths 2~2~2...2~, ( i j= 1, 2) times those of I •  As r 
increases, these squares are nested in the natural way. Let F =  N~= 1 S(~)(D) �9 
Standard methods (compare Falconer, (2) Theorem 8.6) show that the set 
Py ~ F =  (~= 1 (Py ~ s(r)(D)) has Hausdorff dimension s for all - 1 ~< y ~< 1, 
where ])~[~+ 1~21~= 1. 

Let U,(x, y , z ) = ( x + t z ,  y) for t ~ .  By considering the cases 
y < O, y >~ 0 independently, it is easy to verify that the following diagram 
commutes: 

D s , D  

l 
~ x  [---1, 1] --n~q,,w ) , ~ x  [ - -1 ,  1] 

For  each t and r, we have 

(T("1"~2~ ~') (U, (D))= U,(S(r)(D)) 

so, taking the limits of this decreasing sequence of compact sets, 

(~ (T(O'"a2t)) (~) (Ut (D))= Ut(F) 
r = l  

Thus, for each value of t, U,(F) is the co-limit set, and thus the attractor, of 
T(mt,a20. 

From the definition of U,, we have Py c~ U,(F) = U,(Py ~ F). For all y, 
dim(P,  c~ F ) =  s, so it follows from the projection theorems that 

s = dim Ut(Py c~ F) = dim(Py c~ U,(F)) 

for almost all t. Routine arguments give that (y, t) ~ dim u,(pv  c~ F) is a 
Borel function, so it follows by Fubini's theorem that for almost all t e N, 
we have dim(Py c~ U,(F) )=s  for almost all - 1  ~ y ~< 1. By the result of 
Marstand (6) (or see Falconer, (2) Theorem 5.8), dim U,(F) >>. 1 + s for almost 
all t. On the other hand, for each r the set U,(F) is contained in 
(T(~"a2')) (r) (D), a set formed by 2" (overlapping) parallelograms of widths 
)~i,,2i2 ..... 2i~ with 52~.j=1,212ij]~=l. A direct covering argument gives 
dim U,(F) <~ 1 + s for all r We conclude that the attractor U,(F) of T ("~''"2') 
has dimension s, for almost all r 
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Finally note that for t o e 

(to, O ) +  r( '~ 'c2~(x-  to, y ) =  T ~'~ + (1 ;~,0.~2+ ~1 ~.2~,O~(x ' y )  

Thus, the attractors of 

T (alt'a2t) and T (alt+(l Zl)to'a2t+(1--)2)to) 

are translates of each other and therefore have the same dimension. Letting 
(t, to) run through N2, the result follows. | 

Again, by using more delicate projection theorems, one can show that 
the attractor has dimension at least u ~< s except for a set of (cl, c2)~ R 2 of 
zero (1 + u)-dimensional Hausdorff  measure. 

It is easy to see that the Liapunov dimension of the transformations 
T (q'c'2) considered in Theorem 2 is 1 - (2 log 2)/log J21221. This equals the 
"almost sure" Hausdorff  dimension if 21 = 22. 

4. C O N C L U S I O N  

The method described here certainly has much wider applications to 
sets invariant under a collection of linear mappings and to attractors of 
piecewise linear transformations. In the form described here, the method is 
essentially linear. However, there are good reasons for expecting similar 
results to hold for invariant sets and attractors in the nonlinear case. For 
example, if T ~, c ~ D, is a sufficiently large family of (not necessarily injec- 
tive) transformations of a plane region, then the dimension of the attractor 
should be an essentially continuous function of c, so that the restriction of 
T C to D - N  is continuous in c, where N has, in some sense, measure zero. 
It is hoped to incorporate these ideas in a future paper. 
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